
Automation in ETL Testing
Omkar Sanjay Kulkarni

Computer Science Graduate (2013-2017)
CSE Walchand College Of engineering, Sangli, India

Abstract — ETL which stands for (Extract Transform Load) is
a process used to extract data from different data sources,
transform the data and load it into a Data Warehouse System.
ETL testing is done to identify data defects and errors that
occur prior to processing of data for analytical reporting. ETL
testing is mainly done using SQL scripts and manual
comparison of gathered data. This approach is slow, resource
intensive and error-prone. Automating ETL testing allows
testing without any user intervention and supports automatic
regression on old scripts after every new release. In this paper
we will examine the challenges involved in ETL testing and
subsequently need for automation in ETL testing to deliver
better and quicker results.

Keywords— ETL, Data Warehouse, Automation, SQL,
regression, scripts.

I. INTRODUCTION

In managing databases, extract, transform and load (ETL)
refers to three separate functions combined into a single
programming tool. Firstly, the extract function reads data
from heterogeneous data sources and extracts a desired
subset of data. Next, the transform function works with the
acquired data - using rules or lookup tables, calculations,
joining fields, keys, removing incorrect data fields, creating
combinations with other data - to convert it to the desired
state. Finally, the load function is used to write the resulting
data; either all of the subset data or just the changes; to a
target database, which may or may not be previously
created.

ETL testing is done to ensure that the data that has been
loaded from a source to the destination after business
transformation is accurate. It also involves the verification
of data at various middle stages between source and
destination. ETL testing covers all the steps involved in an
ETL lifecycle. It starts with understanding the business
requirements till the generation of a summary report.

ETL testing is performed in following stages:
 Identifying data sources and validation of the

business requirement.
 Data acquisition.
 Implement business logics and dimensional

Modelling.
 Creating test scenarios and test cases.
 After pre-execution check, execute all the test-

cases.
 Generate a complete summary report and file a

closure process.[2]
One Might ask that how the ETL testing differs from

database testing? Both ETL testing and database testing
involve data validation, but they are not the same. ETL
testing is normally performed on data in a data warehouse
system, whereas database testing is commonly performed

on OLTP (transactional systems) where the data comes
from different applications into the transactional database.
ETL testing emphasizes on data extraction, transformation
and loading for BI reporting, while Database testing
stresses more on data accuracy, validation and integration
[1]. ETL Testing involves validation of data movement
from the source to the target system, verification of data
count in the source and the target system, verifying data
extraction, transformation as per requirement and
expectation, verifying if table relations are preserved during
the transformation. On the other hand, Database testing
involves verification of primary and foreign keys,
validating data values in columns, verifying missing data
and to check if there are null columns which actually should
have a valid value.

However, in spite of the increased use and preference of
ETL, ETL testing reflects the state of testing, which is too
slow and too manual, and yet allows an unacceptably high
amount of errors. As an alternative, an automation based
approach is set out, considering how it might make ETL
testing far more efficient, effective, and systematic[11].

II. CHALLENGES FACED BY TRADITIONAL ETL TESTING

SYSTEM

One may have to face different types of challenges while
performing ETL testing which is different from database
testing or any other conventional testing. We will narrow
down the challenges by grouping them according to
principle attributes of ETL testing cycle.

A) The Cardinal Issue of complexity & testability:
The issue behind manual validation is that ETL testing

rapidly becomes highly complex. Probably the most
obvious test is to regulate data completeness which checks
whether all records have been loaded into the data
warehouse or not. For some ETL’s, this can be as easy as
comparing a record count of the source and the target table.
But unfortunately it’s not always that easy, data might be
transformed to a completely different and convoluted
structure following some data modelling technique to
maintain historical information or to improve reporting
performance by storing aggregated results. As the business
grows, and the variety and volume of data it accumulates
increases, the ETL rules grow in order to handle it. In this
rapidly this growth is happening faster than traditional
testing methods can handle. In fact, the sheer amount of
information being collected by data driven organizations
has grown so fast that 90% of the data in the world was
collected in the last two years alone [3], while the amount
of data collected by the average organization is Doubling
each year[4]. We need more sophisticated ETL tests to
further ameliorate the complex issue.

Omkar Sanjay Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (6) , 2017,586-589

www.ijcsit.com 586

ISSN:0975-9646

B) The convoluting and misguided documentation:
The growing complexity is especially problematic for

ETL testing, as the transformation rules are typically stored
in poor documentation, lacking explicit expected results.
The rules are often designed during the development phase
itself, and are frequently stored in written documents or
spreadsheets, they might not exist outside the developers
and testers’ minds. In this instance, no real documentation
exists from which test cases can be confidently derived.
ETL testers are normally not provided with access to see
job schedules in the ETL tool. They hardly have access to
BI Reporting tools to see the final layout of reports and data
inside the reports. Sometimes the testers are not provided
with the source-to-target mapping information [1]. Such
incomplete, equivocal documentation makes difficult for
testers to accurately understand the ETL routines. ETL
testers normally don’t have an idea of end-user report
requirements and business flow of the information that why
often times, testers were left filling in the blanks, but when
they got it wrong, defects affect the ETL routines.

C) The Data complexity:
Data warehouse system contains historical data, hence it

is tough to generate and build test cases, as data volume is
too high and complex. This is another frequent cause of
bottlenecks and defects. Manually deriving test cases and
data from static requirements is highly unprecedented to
change. Another major issue for ETL validation is the
availability of data. Source data might be drawn from
multitude of heterogeneous sources across an enterprise
model. The another problem is that ETL testing is viewed
as a series of additive (linear) stages, so that test teams are
queued while another team accesses the data. If the data
from every data across the enterprise is not available to
every team in parallel, then delays will increase and will
exacerbate the process aiming the team members inert.

D) Consistency, correctness and quality:
Given the complexity of ETL routines, combined with

the poor documentation, it is unfair to expect tester to create
every test correctly needed to validate the possible data
combinations. Manual derivation can leads to massive
under-testing and over-testing, where only a subset of the
plausible logic involved in an ETL routine is tested. When
incorrect, incomplete or invalid data is copied to the target
system, it can jeopardize the integrity of the system.
Sometimes a compromise is made, and only a subset of a
whole dataset is validated. However, this also compromises
the thoroughness of the ETL testing. Given the role of
many ETL routines in business critical operations, such a
compromise is unacceptable. Quality can be further affected
when the expected results are not defined independently of
the shadow code used in testing at all. In this instance,
testers tend to presume that a test has passed, they are likely
to assume that the actual result is the expected result [5],
and so cannot confidently determine data validity.

E) The Constraint of Time:
In above mentioned challenge to maintain consistency,

correctness of data, various roles need to be fulfilled to
ensure integrity of data which in turn is immensely time and
labour intensive. This time wasted on manual test case
design is made worse by the time which then has to be
spent comparing the actual and expected results.
Performing data transformations is a bit complex, as it
cannot be achieved by writing a single SQL query and then
comparing the output with the target. For ETL Testing Data
Transformation, you may have to write multiple SQL
queries for each row to verify the transformation rules
which is time consuming. Comparing the vast individual
fields to the expected results is highly time-consuming,
given the amount of data produced by a complex ETL test
routine, and the fact that the source data will often be stored
in multitude of heterogeneous database and file types.

III. PROPOSED SYSTEM

As long as manual intervention in involved in ETL

testing, one wouldn’t be able to keep up with changing
complexity of data. Below is a possible strategy for
improving the efficiency and efficacy of ETL testing. It is a
model-based, requirements based strategy, designed to
automate the effort of testing, and build quality into the
ETL lifecycle from the very beginning. Such an approach
introduces automation across every stage of testing and
development, while making ETL testing fully susceptible to
constant change.

In the figure below is the outline of the proposed system,
in which the arrows below test case generation indicate
flow of data in parallel manner from synthetic data
generation engine.

 FIG: Proposed System Architecture

Omkar Sanjay Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (6) , 2017,586-589

www.ijcsit.com 587

Step I: Introduce Model based approach

Introducing modelling into ETL testing offers to

maintain testability in case of the ever-growing complexity
of ETL rules, so that testers can quickly understand and
visualize exactly the logic which needs to be tested, as the
modelling helps complex set of ETL rules to be
consolidated into a single, visual diagram [12].

Consider Flowchart Modelling, Modelling ETL routines
as a flowchart therefore eliminates ambiguity from the
requirements documentation, working to avoid the 56% of
defects which stem from it [6]. The flowchart serves as a
single point of reference. In contrast to static written
documents and diagrams, additional logic can be easily
added or omitted to/from the model. In addition to reducing
ambiguity, flowchart modelling also helps to combat
incompleteness.

Another advantage is that expected results can be defined
in the model, independent of the test cases. In flowchart
modelling the user can define the model to include the
boundary results and diffuse their expected result to various
end points in the model. By setting boundary points, one
can clearly defines what should be accepted and rejected by
a validation rule, so that testers do not wrongly assume that
tests have passed when the expected result is not stated
explicitly.

Step II: Automatically Derive Test Cases from the

Flowchart Model

The introduction of Model-Based Testing can automate

one of the major and manual elements of ETL testing:
design test case. Tester’s no longer need to manually copy
SQL from the source to target database. Due to automation
is various constraints are simplified. Automated
mathematical algorithms can then be applied, to identify
every possible path through the flowchart model, generating
test cases which cover every set of inputs and outputs
combinations.

A further advantage of this method is that testing
becomes measurable. Because every possible test case can
be derived, testers can determine exactly how much scope a
given set of test cases provides. It also helps in maintaining
the principle 'Test More in Fewer Tests'. Automated
optimization algorithms help to reduce the number of test
cases down to the bare minimum, while retaining maximum
functionality coverage. These combinatorial techniques are
made possible by virtue of the simplified structure of the
flowchart.

Step III: Automatically Create the Data Needed to

Execute the Tests and Provision of that data in parallel

Once test cases have been created, testers require data

which can cover all of the possible tests in order to execute
them. Such data can also be derived directly from the model
itself. A synthetic data generation engine like CA Test Data
Manager [6] offers multiple ways to create the required data
when using Model-Based Testing to drive ETL testing. This

is because, in addition to functional logic, a flowchart can
also be overlaid with all the data involved in a system.

What’s critical for managing the time constraint for
efficient ETL testing is that the 'Utmost dilapidated' data is
stored efficiently, so that the same data sets can be
requested, cloned and delivered in parallel. This, in turn
eliminates the delays caused by data constraints. The first
step to efficient data storage is the creation of a Test data
Mart, where data is equalled to specific tests. Test matching
data can eliminate the time otherwise spent searching for
data among large production data source, as data can be
retrieved automatically from the Test Data Warehouse;
which serves as a central library, where data is stored as re-
usable assets, alongside the associated queries needed to
extract it.

Data can be fed into multiple systems simultaneously,
and is cloned as it is provisioned. This means that data sets
from numerous source databases are available to multiple
teams in parallel. ETL testing is no longer a linear/additive
process, and the long delays created by data constraints are
removed. The original data can be maintained as changes
are made to the model, enabling teams to work on multiple
releases and versions in parallel.

Step IV: Validation of data against the rules and

Automatically Compare the Results

Once testers have the tests needed to fully test an ETL

routine, and the data needed to execute them, the validation
process itself must also be automated if ETL testing is able
to keep up with the changing requirements. Using Data-
Driven Automation where a test harness created in a data
orchestration engine [6] can take each row of an XML file,
defined in the flowchart, and execute it as a test, meaning
that the data, matched to specific tests and expected results,
can be taken, and pumped through a validation rule. This
automates both the execution of tests and the comparison of
the actual versus expected results. Testers no longer have to
manually copy scripts from the data target to the data
source, and also avoid the error-prone process of having to
compare every individual field produced by the
transformation.

Step V: Automate the implementation of changes made

One of the advantages of Model-Based Testing for ETL

validation is the ability to react to changes [12]. Because
the tests cases, data and requirements are so closely linked,
a change made to the model can be automatically reflected
in the test cases and associated data. This traceability means
that, as ETL routines rapidly grow more and more complex,
testing can keep up, and does not create bottlenecks in the
Application Delivery pipeline. With flowchart modelling,
implementing a change becomes as quick and simple as
adding a new block to the flowchart. As the test data is
traced back to the model, when the requirements change,
the changes are automatically reflected in the relevant data
subsets. Data is available parallelly while the data needed
for efficient regression testing is preserved in the Test Data
Mart.

Omkar Sanjay Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (6) , 2017,586-589

www.ijcsit.com 588

IV. FUTURE SCOPE

Although many organizations still use ETL testing tools
without automation, there are many alternatives available in
market which automate the whole ETL testing process in
more meticulous manner.

Datagaps provides ETL validator which comes with the
most comprehensive data testing automation platform
(DTAP) with features such as visual test case builder,
metadata and FLAT files testing capability [7]. Another
ETL testing tool that provides complete automation is
QuerySurge. It provides creation of test QueryPairs fast &
without writing any SQL with Query Wizards, it also
schedules tests to run immediately, any date/time or
automatically after event ends[8]. Another leading ETL
testing automation solution is iCEDQ which comprises of
rich features like Database and file connectors, in-memory
rule engine and various test suites [9]. And many other
automation services are available for ETL testing. One just
have to choose the tool which accommodates its volume of
data and provides tests according to business model.

V. CONCLUSION

Introducing a higher degree if automation into ETL
testing is of dire importance for any organization striving
for extensive data preparation and transformation.
Automated ETL will provide a simplified and more
transparent experience than manual coding – particularly
when working with rapidly changing data for Delivery of
high quality, further minimizing manual effort in ETL
validation, from manually writing ghost code and static
requirements, to sourcing the required data and comparing
the results.

The Bottom Line is Coders will always have reservations
about any tool that simplifies manual coding but the
advantages overweigh the drawbacks [10]. Due to
automation, ETL testing no longer creates bottleneck in
application delivery, and can keep up with the pace with
which data-driven businesses grow. In the end, automating
the whole testing process will save a lot of time and users
will appreciate the quality of Business Intelligence tools
and accept the data from BI solution as the single version of
the truth.

ACKNOWLEDGMENT

I would like to thank Tutorialspoint.com for providing in
depth knowledge on ETL testing which helped me evaluate
the pros and cons of ETL testing. Also I would like to thank
the good folks at CA technology, their whitepaper on
Automation helped me to study statistics, facts and models
related to ETL testing and also it provided references to
various articles on ETL testing, Surveys and data
warehouse/Data Marts analogy.

REFERENCES
[1] ETL testing tutorial. Available at https://www.tutorialspoint.com
[2] ETL Testing or Data Warehouse Testing Tutorial. Available at

https://www.guru99.com/utlimate-guide-etl-datawarehouse-
testing.html

[3] IBM, Available at http://www-
01.ibm.com/software/data/bigdata/what-is-big-data.html

[4] Jacek Becla and Daniel L.Wang, Lessons Learned from managing a
Petabyte, Available at
http://www.slac.stanford.edu/BFROOT/www/Public/Computing/Da
tabases/proceedings/.

[5] Robin F. Goldsmith, Four Tips for Effective Software Testing.
Available at http://searchsoftwarequality.techtarget.com

[6] White Paper on Fully Automated ETL Testing a Step-by-Step
Guide. Available at https://www.ca.com/us/collateral/white-
papers/fully-automated-etl-testing-a-step-by-step-guide.html

[7] Product Page of DATAGAPS ETL VALIDATOR. Available at
http://www.datagaps.com/etl-testing-tools/etl-validator

[8] Automate the Testing Effort, product page of QuerySurge.
Available at http://www.querysurge.com/business-
challenges/automate-the-testing-effort

[9] Product Page of iCEDQ. Available at
https://icedq.com/solutions/etl-testing

[10] Adi Azaria, THE CASE FOR AUTOMATED ETL VS MANUAL
CODING. Available at https://www.sisense.com/blog/the-case-for-
automated-etl-vs-manual-coding/

[11] Davy Knuysen, Automate your ETL testing and deliver quicker and
better results. Available at
http://www.element61.be/en/resource/automate-your-etl-testing-
and-deliver-quicker-and-better-results

[12] Model Based Testing – Stuff You Must Know Available at
https://www.guru99.com/model-based-testing-tutorial.html

Omkar Sanjay Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (6) , 2017,586-589

www.ijcsit.com 589

